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This paper describes the results of a numerical study of the thermal instability 
that develops during heating of a ceramic whose coefficient of thermal conductiv- 
ity diminishes with rising temperature. 

It was previously shown theoretically [i] that thermal instability can arise in a sys- 
tem composed of a heater and a ceramic as a consequence of the dependence of the ceramic's 
coefficient of thermal conductivity on temperature (a diminishing or nonmonotone relation- 
ship). The number of stable and unstable steady-state regimes were determined within the 
framework of the steady-state approach, and the critical conditions for the transitions 
from one regime to another were established. Such nonsteady-state characteristics of 
thermal instability as the process stabilization time, induction period, dynamics of tem- 
perature field variation in the heater and ceramic, and so forth are of practical impor- 
tance. The present paper is devoted to determination of these characteristics and numer- 
ical illustration of various thermal regimes during indirect electrical heating of a ce- 
ramic with a diminishing temperature function for its coefficient of thermal conductivity. 

We will consider the following problem for this purpose. Suppose that we have a 
cylindrical heating element of radius r a (region 2, Fig. i) enclosed in a layer of ceramic 
with thickness d = r z -- r0 (region i, Fig. I). An electric current is passed through the 
heater. The temperature drop along the length of the heater and in the ceramic layer is 
neglected, since it is considered to be small in comparison with the radial drop, because 
of the long (E >> r 0) length. A constant temperature To is maintained at the surface of 
the ceramic, or the heat rejection into the environment (calculated from Newton's law) is 
specified; we will assume the heat capacities of the heater and ceramic (C 2 and C I respec- 
tively) to be constant. 

The formulation of the problem includes the unsteady-state heat conduction equations 
for the ceramic (index 1) and heater (index 2): 
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with the boundary conditions: 

OT1 - -  ~z ( T  1 - -  T o ) )  . r = h :  T I = T o  or 2~1(T1) Or ~=~= (3) 

The contact at the heater-ceramic boundary is presumed to be ideal; we are therefore justi- 
fied in specifying equality of the temperatures and heat fluxes: 
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Fig. I. Diagram of system, i) Ceramic; 2) heating element. 

Fig. 2. a) Temperature distribution in system with different 
values for parameter A: i) 0.004; 2) 0.048; 3) 0.48; 4) 4.83; 
b) maximum temperature drop in heater as function of param- 
eter A. Here AT is in K and r is in mm. 

The symmetry condition 

OT2 --  0 

Or 

is satisfied when r = 0. The initial conditions are: 

(5) 

t = o: T~ = Yi~, T~ = Ti~. ( 6 )  

Passage of an electric current through the heater results in liberation of Joule heat 
in it, which is evaluated from the following formula for the constant-current regime [2]: 

q+ (T2) --  P (T2) J~" ( 7 )  

The function p(T) can be represented in the form [3]: 

p (T~) = Po (1 + yT~), ( 8 )  

for materials with metallic-type conduction. The heat source equation is written as follows 
in dimensionless form: 

q+ (0) = q+ (T2) r~/k2oAT. ( 9 )  

The ceramic's coefficient of thermal conductivity is assumed to be a diminishing function 
of temperature [4]: 

~1 (T1) = - -  aT~ + b. ( 1 O) 

The d i m e n s i o n l e s s  f o r m u l a t i o n  o f  t h i s  p r o b l e m  i s :  

( ool "/ A 001 1 O Al(O~)x , ( 1 1 )  
o-7-= x o~- ~ /  
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Fig. 3. a) Steady state temperature as function of current under 
subcritical conditions: i) steady state solution; 2) full formula- 
tion; 3) averaged formulation; b) critical current as function of 
ceramic layer radius with r0 = 0.25 mm. Here I is in A and T is 
in ~ 

Fig. 4. System heating curves for different currents: i) I = 7.6; 
2) 7.8; 3) 8.0 A. Here t is in sec. 

ao~ 1 0 
O~: x Ox Ox ) ~ q+ (02); (12) 

with the boundary conditions: 

x = O :  Oh). --0, 
ax ( 1 3 )  

x = 1. o ,  = e , ,  A, (02) ae.~ A, (o~) ae ,  
Ox Ox 

0@1 - - - - B i@l )  ; X =Xl :  01 = 0 or AI((~I) C]X 

and the initial conditions: 

T = O: 01 = Oil, O2 = @i2. (14)  

We employed  t h e  h e a t  b a l a n c e  method [5] and a c o n s e r v a t i v e  b a l a n c e  scheme [6] t o  s o l v e  
system of equations (ii)-(14). The partitioning was uniform in region 2, while the space 
step in region 1 was consistent with the net in region 2. The finite difference equations 
were solved by the iterative trial-and-error method. The temperature regimes in the heater 
and ceramic were found by numerical solution for specific input data. 

Figure 2 shows the temperature distribution in the heater and ceramic for different 
values of the parameter A = ~z0/X20, which characterizes the ratio of the coefficients of 
thermal conductivity for the heater and ceramic materials (Fig. 2a), and the maximum tem- 
perature drop in the heater as a function of the parameter A (Fig. 2b). The smaller the 
value of A, the more uniform was the temperature distribution in the heater. As our nu- 
merical calculations showed, the maximum temperature drop in the heater did not exceed 1 
degree when the value of A was <0.05. It is best in this case to solve the simplified pro- 
blem in which the heater temperature is averaged, introducing the average function T2: 
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Fig. 5. a) Temperature at characteristic point as 
function of Bi, with I = 7.5 A, r 0 = 0.25 mm, and 
r I = 2.5 mm; b) system heating curves at different 
Bi: i) Bi = ~; 2) 5.0; 3) 0.5; 4) 0.25; 5) 0. 

ro 

L =  - T -  .t' r r r. (15) 
0 

This formulation of the problem contains only one heat conduction equation for the ceramic: 

07.1 OTa 1 0 ~ ( r  0 r . (16)  
ClPl 0"- -~  ~--- r 0~-  - - ~ r  ] 

The boundary conditions at the heater-ceramic boundary are written as: 

OT~ 2 OT 1 
c2P~ at = ro Xl(ra)---O~r=r~ +q+(~2)" (17) 

This problem was also solved on a computer. As can be seen from Fig. 3, the results yielded 
by solution of the steady state problem in [i] (curve i) and the full and averaged problems 
(curves 2 and 3 respectively) were in good agreement. Determination of the critical currents 
when heater geometric dimensions are small (in comparison with those of the ceramic) requires 
more computer time for the full than for the averaged problem, although the solution is more 
accurate in the first case. We therefore employed model 2 (the averaged problem) to deter- 
mine the order of magnitude of the critical currents and then solved the full problem 
(model i) near these values in order to find the specific parameters. 

The computational results in Fig. 3a enabled us to establish that a stable steady-state 
regime was realized in the system when the current was below the critical level. The maxi- 
mum steady-state temperature did not exceed 800~ in this case. A progressive heating 
regime (the so-called exacerbation regime [7]) appeared at supercritical currents, leading 
to system failure. 

Figure 4 illustrates system dynamics (with the heater-ceramic boundary as the char- 
acteristic point) under subcritical (curve i, current of 7.6 A) and supercritical (curve 2, 
with a current of 7.8 A) conditions. As can be seen, the transition from steady-state to 
essentially unsteady conditions took place discontinuously with only a small change in 
current. The current under supercritical conditions had a significant influence on the 
induction period for the exacerbated regime (curves 2 and 3). We will follow [8] in assum- 
ing the induction period to be the time required to attain the maximum heating rate. 

The critical current was affected by the ceramic wall thickness and the conditions 
for heat transfer to the outer surface of the system. Figure 3b shows the influence of 
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ceramic layer thickness on the critical current. As can be seen, the sharpened values 
for the critical current (unsteady formulation, curve 2) were somewhat higher than those 
yielded by solution of the steady-state problem (curve i). It should be noted that, once 
the ceramic layer reached a certain thickness, making the layer thicker did not lead to 
any perceptible change in the critical current. 

The computational results depicted in Fig. 5 enable us to consider the influence of 
external heat transfer conditions on system heating regime. It can be seen (Fig. 5a) that 
the influence of heat rejection to the outside on the thermal conditions in the ceramic 
was negligible as Bi was raised from 0.5 to ~. This case is similar to that in which a 
constant temperature is specified at the surface. Variation of Bi over this range did not 
lead to any perceptible change in heating conditions (Fig. 5b, curves 1 and 2). Variation 
of Bi in the interval ]0; 0.5[ had a strong influence on the induction period and caused 
a qualitative change in heating regime, leading to a transition from subcritical to super- 
critical conditions (curves 3 for the first case and 4 and 5 for the second in Fig. 5b). 

Analysis of the results described in the present paper indicates that the nonsteady- 
state characteristics and the parameter region corresponding to thermal instability have 
real values during electric heating of a ceramic and correspond to practical design calcu- 
lations for heat insulation and operation of heating equipment. 

SYMBOLS 

r 0, r i) radii of heating element and ceramic respectively; s heater length; To, TI, 
T 2) temperatures at system outer surface, in Ceramic, and in heater; T,) characteristic 
temperature of heater; ci, Pl, c2, P2) heat capacities and instability of ceramic and 
heater; k2, %1) coefficients of thermal conductivity for heater and ceramic materials; 
p1(T2) heater resistivity; q+(T2)) heat evolution flux instability; j = I2/~2r~) current 
instability; I) heater current; t) time; O = (T--T0)/(T*--T0)) dimensionless temperature; 

a20 
x = r/r 0) dimensionless coordinate; ~=--zt) Fourier number; Bi = ri/110 ) Blot number; 

r 0 

al0, a20) coefficients of thermal diffusivity for ceramic and heater; I, A, D, DI) 

T~ b 
parameters, defined as A=2~i0/%20. A=a;o/a2o. D~ -~ 

AT aAT ' 
A T : T , - - T o ,  D ~ : b l / a , A T ,  where a ,  b ,  a l ,  

and b~ are empirical constants in relationships k1(T~)=--aT~+b, %2(T2)=a~T2-~b~, k~0=aAT. >~0=a~AT; 

A~(8~), A2(02)) dimensionless functions AI(@~)=--(@~+D), A2(Oz)----@2+D~ 
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